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Abstract—This paper presents a spectrally efficient protocol for
half-duplex multi-relay systems in block fading channels where a
direct source-destination link is unavailable. The proposed pro-
tocol adaptively selects either successive interference cancelation
(SIC) or joint decoding according to the causal decoding status
of each relay. We also adopt dynamic refreshing that restarts
the protocol whenever it is advantageous to do so, even if the
relay decoding set (the set of relays that are able to decode
the message) is not empty. The achievable diversity-multiplexing
tradeoff (DMT) of the proposed protocol with m-antenna nodes
is analyzed via a Markov chain whose states are related to the
cardinality of a decoding set. This protocol strictly improves
the DMT of the existing DF half-duplex relay-selection protocols
without decoding delay, and in the low multiplexing gain region
is able to meet the DMT upper bound. The main contributions
of the paper are the state-dependent decoding strategies in DF
multi-relay systems and also the dynamic refresh for the flushing
of residual interferences in the system, concepts that may find
usefulness beyond the gains in the high-SNR regime.

Index Terms—Half-duplex relay, diversity-multiplexing trade-
off, dynamic decoding, dynamic refreshing.

I. INTRODUCTION

A. DMT in Half-duplex Relay Networks

HALF-DUPLEX relay protocols were first studied in [1]
and analyzed in terms of diversity and multiplexing

tradeoff (DMT) which effectively explains a fundamental
relationship between spectral efficiency and diversity gain in
wireless fading channels [2]. Laneman et al. [1] derived the
DMT upper bound of cooperative networks with K half-
duplexing relay nodes with a single antenna at each and
showed that the DMT upper bound is determined by either
a (K + 1) × 1 multiple-input-single-output (MISO) channel
or a 1× (K+1) single-input-multiple-output (SIMO) channel
if a direct link between source and destination exists, where
especially K = 1.

Although half-duplex operation is more practical than full-
duplex operation, it suffers from a multiplexing loss. In
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order to overcome the multiplexing loss in half duplexing
amplify-and-forward (AF) and decode-and-forward (DF) re-
laying strategies, nonorthogonal amplify-and-forward (NAF)
and dynamic decode-and-forward (DDF) were proposed. NAF
was originally proposed by Nabar et al. [3] and further
analyzed by Azarian et al. [4]. NAF attains additional perfor-
mance gain over simple AF strategy owing to source node’s
transmission in the second phase (second time slot), but cannot
achieve the optimal DMT. DDF was proposed in [4]–[6]
independently, and its DMT was analyzed in [4]. In the low
multiplexing gain regime, DDF was shown to achieve the
optimal DMT for a single relay node with a single antenna.
However, in the high multiplexing gain regime (larger than
1/2), DDF cannot achieve the optimal DMT due to the time
spent by relay in listening the signal from source. Furthermore,
in the networks with multiple relay nodes, the gap between
the optimal DMT and the achievable DMT of NAF or DDF
becomes larger as the number of relay nodes increases.

Recently, Yuksel et al. [7] showed that the compress-
and-forward (CF) strategy achieves the optimal DMT for a
single relay node with multiple antennas. In the CF strategy,
relay does not decode the received signal, but compresses it
under a compression constraint and forwards it to destination.
However, in order to define the constraint on compression,
CF requires the relay to perfectly know the full channel state
information (CSI) of all channels involved in the transmission.
Pawar, et al. [8] proposed quantize-and-map (QM) strategy
where the relay does not decode the received signal from
source but extracts the most significant bits of the received
signal above a noise level by proper quantization and forwards
it to destination. QM was shown to achieve the optimal DMT
for both a single relay node and multiple half-duplex relay
nodes even without full CSI. However, in the network with
multiple relay nodes, no interference between relay nodes was
assumed. It should also be noted that neither CF nor QM are
effective if a direct link between source and destination is
absent, because the compressed or quantized signal forwarded
by a relay node helps the transmission from source via the
direct link.

B. DMT in Half-duplex Multiple Relay Networks

In multi-relay networks, Escrig [9] proposed on-demand
cooperation with relay selection (OXIDE) initiated by des-
tination in view of medium access control (MAC) layer. The
OXIDE protocol is a combination of incremental relaying and
opportunistic SDF in the multi-relay environment with a direct
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path. With the help of additional dimensions provided by
retransmissions, the OXIDE protocol compensates for the half-
duplex loss and achieves optimal DMT1. Without additional
dimensions by retransmission like H-ARQ, one may also
address the loss with transmission strategies where the source
transmits in every transmission interval concurrently with
alternating relay transmissions.

For the DF strategy, [11] and [12] proposed alternate relay-
ing protocols for the network with two half-duplex relay nodes
without a direct link and with a direct link, respectively. In
[11], one relay node forwards the received signal from source
and the other relay node decodes the signal from a source by
dealing with the inter-relay interference as a Gaussian noise.
In [12], one relay node forwards the received signal from a
source and the other relay node receives the signal from the
source by using successive interference cancelation (SIC) that
decodes the interference signal from the other relay first if the
interference is strong enough or decodes the desired signal
by dealing with the interference as a Gaussian noise. This
protocol can achieve the upper bound of DMT if the number
of phases is sufficiently large and the channel between relay
nodes is good enough to guarantee the success of SIC at relay
nodes. However, the success of SIC is not always guaranteed
in general. Bletsas and Dimitriou [13] evaluated opportunistic
relaying with the successive transmission like [11] and [12] in
the presence of a thermal noise as well as interference from
a selected single relay in the multiple-relay environment. No
inter-relay interference was taken into account in the analysis
of outage probability of the proposed protocol by assuming
directional antennas at relay nodes. No consideration of inter-
relay interference makes the proposed method neither general
nor practical as the authors mentioned in their paper.

Using AF strategy, Yang and Belfiore [14] proposed a
sequential slotted amplify-and-forward (SSAF) technique with
multiple half-duplex relay nodes. In the SSAF scheme, a
pair of relay nodes forwards the amplified version of the
received signal which was received in the previous phase
in every phase while other relays listen the signal from a
source. The SSAF scheme achieves the optimal DMT when
the interference between relay nodes does not exist. In [15], a
random sequence (RS) scheme was proposed with multiple
half-duplex AF relay nodes when a direct link between a
source node and a destination node does not exist. RS allows
successive transmissions at a node by selecting proper multi-
hop paths. The RS scheme was proved to achieve the DMT of
the K×1 MISO upper bound as the number of blocks increase
in a quasi-static channel where channel state is not varied over
one block consisting of multiple slots. A few features of the
RS method include the assumption of a quasi-static channel
with very long coherence interval (many transmission blocks),
fundamental dependence on the linearity of the AF protocol,
and simultaneous decoding of several message blocks at the
destination with an associated decoding delay. In contrast,
this paper addresses the DF protocol, does not assume very
long coherence intervals, and the decoding occurs within
each transmission block which produces a relatively shorter

1However, because delay caused by retransmissions is not reflected in DMT,
some studies define a new DMT measure such as diversity-multiplexing-delay
tradeoff (DMDT) [10] for fair comparison.

decoding delay. Recently, [16] showed that the half duplex
loss can be recovered by coded cooperation and successive
cancelation at relays in DF relay networks allowing one
time protocol re-initiation. As the number of assisting relays
increases, the proposed multi-relay coded cooperation protocol
in [16] achieves the DMT upper bound.

Although some DMT optimal strategies have been known,
they suffer from decoding delay which makes the strategies
practically infeasible. To the best of our knowledge, in multi-
relay DF networks without a direct source-destination link,
existing methods fall short of the DMT upper bound. Some
DMT-optimal strategies exist either in the presence of a
direct link or with AF strategies that allow long codewords
going across multiple blocks. For example, the method of
[15] is limited to AF and requires knowledge of an equiv-
alent channel matrix whose size increases proportionally to
Θ(B2K2), where B is the number of repetitions of the multi-
hop paths and K is the number of relays. From a perspective
of practical implementation, the encoding/decoding delays and
the burden on the channel estimation in the scheme of [15] is
considerable. In order to improve the DMT performance for
DF strategies in systems without a direct link, Tannious and
Nosratinia [17] proposed a spectrally efficient relaying scheme
called multi-hop relay selection (MHRS) that combines joint
decoding and SIC in a multiple relay network without a direct
link. In this scheme, a codeword is transmitted at the source
node in every phase. At relay nodes, the received signal from
a source node in the previous phase is utilized to cancel out
interference from the relay node which is selected to forward
the received data to a destination node. The MHRS scheme
cannot achieve the optimal DMT bound. The emphasis of
this paper is improvement of the DF protocol in multi-relay
channels without a direct link. The present work provides
several important improvements over [17] which are outlined
in the following subsection.

C. Contributions

We consider the DF half-duplex multi-relay scenario with-
out a direct source-destination link, and propose a protocol
whose assumptions on inter-relay interference and the required
number of phases are more relaxed than several previous
works [11]–[20]. We propose several new techniques and are
able to strictly improve the DMT performance, in other words,
reduce the so-called half-duplex loss. Our contributions are
summarized as follows:

• Introducing dynamical joint decoding and SIC at relay
nodes, based on the decoding status of the relay node in
the previous phase. The use of joint decoding and SIC in
the context of cognitive radio [17] has so far been static,
in the sense that at each multiplexing gain, [17] decides
to use SIC or joint decoding once and for all, regardless
of the instantaneous state of the system. In this work, if
a relay node succeeds in decoding the received data of
the previous phase, it performs SIC. If not, it performs
joint decoding. We analyze the outage probability of the
proposed protocol via a new analytical framework based
on the Markov chain in a steady state. Our analysis in
addition further generalizes [17] by allowing multiple
antennas on all nodes.
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• We also introduce dynamic refreshing of the proposed
protocol. Dynamic refreshing enables a restart of the
transmission protocol even if the decoding set is not
empty in order to enhance diversity gain in the moderate
and high multiplexing gain regime.

• The proposed protocol improves the DMT of existing DF
half-duplex relay-selection systems, and specifically in
low multiplexing gains achieves the DMT upper bound.
However, we emphasize that the contributions of this
paper are mainly the introduction of dynamic (state-
dependent) decoding and refresh strategies in the DF
half-duplex relay selection systems, concepts that may
find usefulness beyond just the gains in the high-SNR
regime.

D. Organization and Notations

The rest of this paper is organized as follows. In Section
II, we present system and channel models of the proposed
protocol. The description of our proposed protocol is given in
Section III. DMT analysis using a Markov chain are provided
in Section IV. In Section V, we introduce dynamic refreshing
of the proposed protocol and analyze its DMT. In the Section
VI, we briefly show that how much the proposed protocol can
be improved when CSI at the transmitter (CSIT) only for joint
decoding is used. Numerical results are given in Section VII
and finally, conclusions are drawn in Section VIII.

Throughout this paper, as used in [2], f(ρ)
.
= ρv if

lim
ρ→∞

log(f(ρ))

log ρ
= v. (1)

a+ denotes max(0, a) for any real value a, and log(·) denotes
the base-2 logarithm. [a,b] denotes a set,
{x ∈ R|a ≤ x ≤ b}, where R is the set of real values. We
denote conjugate transpose of the matrix A as A† and its
determinant as |A|. IM denotes a M ×M identity matrix.

II. SYSTEM AND CHANNEL MODELS

We consider a decode-and-forward (DF) based cooperative
wireless communication system utilizing a multi-phase half-
duplex relaying protocol, as shown in Fig. 1. The system
consists of a single source node, a single destination node,
and K relay nodes denoted by s, d, and r ∈ {1, · · · ,K},
respectively. Each has m antennas. It is assumed that a direct
link between the source and destination nodes does not exist
due to the geometry of relay networks as assumed in [11],
[13], and [17]. The number of whole phases is n.

Assuming a relay set is denoted as Srelay = {1, · · · ,K},
the received signal at node B from node A in the ith phase
is given by

yB = H
(i)
A,Bx

(i)
A + n

(i)
B (2)

where x
(i)
A ∈ Cm×1 indicates the signal transmitted from node

A in the ith phase and H
(i)
A,B ∈ Cm×m represents the fading

channel from node A to node B in the ith phase. The terms
A and B can be either the source (s) and the relay (rj , ∀rj ∈
Srelay) or the relay and the destination (d), respectively. The
channel fading coefficients, hjk , j, k = 1, ...,m are assumed
to be a complex Gaussian random variable ∼ CN (0, 1). The
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Fig. 1. System model.

channels between two nodes are assumed to be frequency-flat
and vary independently in every phase. In this paper, perfect
CSI at the receiver (CSIR) is assumed. Transmissions are
assumed to be synchronized. Pilot training sequences are used
for channel estimation at the receiver, and it is assumed that
channel estimation errors are not occurred. In our protocol,
all phases have the same time length and the fixed time
duration for channel estimation in each phase is assumed
to be negligible compared to data transmission duration in
each phase. Especially, the source-to-relay channel and inter-
relay channel (between the selected relay and the other relays)
can be estimated at once by broadcasted orthogonal pilots
from the source and the selected relay, respectively. Pilots are
assumed to be orthogonal in time, i.e., sent one after each
other in successive time intervals without overlap. Because
we are doing DMT and the number of relays does not
increase with SNR, still the amount of time spent on pilots is
negligible. Relay-to-destination channel can also be estimated
simultaneously by using orthogonal pilots. Pilots are assumed
to be orthogonal in time, i.e., sent one after each other in
successive time intervals without overlap. Because the key
metric is DMT and the number of relays does not increase with
SNR, still the amount of time spent on pilots is negligible.2

An additive white Gaussian noise (AWGN) at node B in the
ith phase is denoted by n

(i)
B and it is assumed to follow a

complex Gaussian distribution ∼ CN (0, N0).
For simplicity, all nodes are assumed to have the same

transmit power constraint P , and SNR at each receiver is
denoted ρ, i.e., ρ = P

N0
. Let D(i) be a decoding set consisting

of the relay nodes that successfully decode the transmitted

2Throughout this paper, pilot signaling is just for the support of CSIR in a
multi-relay environment generally assumed in many works [1] and resource
handling for the signaling in higher layers including MAC (medium access
control) layer is beyond the scope of this paper.
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data from the source node in the ith phase and
∣∣D(i)

∣∣ be the
cardinality of the decoding set.

In this paper, the source node is assumed to transmit an
independent packet consisting of a codeword obtained from
random Gaussian codebook in every phase. The length of
a codeword in a phase is assumed to be sufficiently large
so that the error event is dominated by the outage event
but spans only one coherence time. In the first phase, the
source node transmits (broadcasts) a packet to relay nodes.
Then, in the second phase, the relay node having the largest
relay-to-destination channel gain in the decoding set (D(1)) is
selected. The index of the relay selected in the second phase is

determined by b∗(2) = argmaxr∈D(1)

∥∥∥H(2)
r,d

∥∥∥2
F
, where ‖ · ‖F

is the Frobenius norm of a matrix.
This relay selection can be executed in the centralized

manner by the destination as in [17] and [21]. Under the CSIR
assumption, the destination can indicate the selected relay by
forwarding a small amount of feedback bits after recognizing
which relay’s channel is the best. In the proposed protocol,
each relay informs its status to the destination whether it
has successfully decoded the received signal using a single
feedback bit. Then, the destination broadcasts to all relays,
and one of the relays is selected using logK bits. Therefore,
1+ logK

K bit per node per phase is required for relay selection.
Meanwhile, at the same phase (the second phase), the source
node transmits another packet to the relay nodes. After the
second phase, the selected relay node forwards the packet
received in the previous phase, and the source node broadcasts
the next packet in every phase. In the last phase (i = n),
the selected relay node forwards the packet received in the
previous phase while the source node is silent. The channel
from the selected relay to other relay nodes is assumed to be
known to the other relay nodes through channel estimation.

III. PROPOSED SPECTRALLY EFFICIENT COOPERATIVE

RELAYING PROTOCOL WITH DYNAMIC REFRESHING

In most phases (except for i = 1, n), all relays except for the
selected relay suffer from interference from the selected relay
when the relays decode the received packet from the source.
As for the relay nodes which are not selected and belong to
the decoding set, they can decode the received packet in the
current phase without interference caused by the selected relay
using the SIC technique because they already successfully
decoded the packet of the previous phase and knew the channel
from the selected relay. Let ESIC be the set of outage events
in the i-th phase when SIC is performed at the j-th relay node.
Then, ESIC can be represented as

ESIC =
{
log

∣∣∣IM + ρH(i)
s,rjH

(i)†
s,rj

∣∣∣ < R
}
, (3)

where R is the given rate.
When the relays that are not in the decoding set decode the

received packet in the current phase, they try to perform joint
decoding which means concurrent decoding of interference
and signal at each relay (as opposed to successive cancelation,
which decodes the interference first). In each phase, relay
nodes except for the selected relay have a multiple-access
channel from the source (desired packet) and the selected relay
(interference). For successful decoding by joint decoding, a

rate pair of the desired signal and interference should be within
the multiple-access channel capacity region or the desired
signal can be decoded under interference. Let EJD be the set
of outage events with joint decoding in the i-th phase for the
j-th relay. Then, EJD can be expressed as intersections of the
following events like a Z-channel [23]:

E1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log
∣∣∣IM + ρH

(i)
s,rjH

(i)†
s,rj

∣∣∣ < R ∪
log

∣∣∣IM + ρH
(i)
b∗,rjH

(i)†
b∗,rj

∣∣∣ < R ∪
log

∣∣∣IM + ρH
(i)
s,rjH

(i)†
s,rj + ρH

(i)
b∗,rjH

(i)†
b∗,rj

∣∣∣ < 2R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(4)

E2 =

{
log

∣∣∣∣∣IM + ρH(i)
s,rj

(
IM + ρH

(i)†
b∗,rjH

(i)
b∗,rj

)−1

H(i)†
s,rj

∣∣∣∣∣ < R

}
. (5)

From the outage events given by EJD , i.e., EJD = E1 ∩ E2,
the condition for successful decoding at the j-th relay in the
proposed protocol is obtained in Eq. (6) for 2 ≤ i ≤ n− 1 on
the top of the next page.

Note that one of the main differences of the proposed
protocol from [17] is dynamic decoding. While the selection of
decoding strategy in [17] is determined by DMT performance
according to multiplexing gain, that in the proposed scheme
is determined by the state of the relay whether it is in the
decoding set or not. Note also that the number of phases in
[17] is restricted less than the number of relays nodes in order
to prevent zero diversity gain because the relay nodes excluded
from the decoding set are not likely to contribute to the overall
diversity gain any longer. The restriction on the number of
transmission phases hurts the generality of analysis and does
not match with the ultimate objective of a spectrally efficient
protocol that asymptotically recovers multiplexing gain to m.

Without the restriction on the number of transmission
phases, in order to optimize the refreshing cycle, we con-
sider dynamic refreshing in the proposed protocol which is
another main difference from [17]. The main idea of dynamic
refreshing is to allow refreshing and restarting of the proposed
protocol even before the decoding set is empty. Dynamic
refreshing secures diversity gain even in the high multiplexing
gain regime. Let Nc be the cardinality of the decoding set
which determines the time to restart the transmission protocol.
For example, Nc = 2 means that the protocol restarts when
the cardinality of the decoding set is less than three.

IV. DIVERSITY MULTIPLEX TRADEOFF ANALYSIS WITH

MARKOV CHAIN

In this section, we analyze outage probability and DMT
of the proposed protocol for a sufficiently large number of
n phases. For DMT analysis, note that multiplexing gain and
diversity gain are defined, respectively, as

r = lim
ρ→∞

logR(ρ)

log ρ
, d = lim

ρ→∞− log Pout(ρ)

log ρ
(7)

where R(ρ) represents the transmission rate, and Pout denotes
outage probability. In order to compute outage probability
in the i-th phase, we should consider the (i − 1) outage
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rj ∈ D(i) if

⎧⎪⎪⎨
⎪⎪⎩

log
∣∣∣IM + ρH

(i)
s,rjH

(i)†
s,rj

∣∣∣ ≥ R, for
∣∣D(i−1)

∣∣ = 0,

log
∣∣∣IM + ρH

(i)
s,rjH

(i)†
s,rj

∣∣∣ ≥ R, for
∣∣D(i−1)

∣∣ 
= 0 and rj ∈ D(i−1)

Ec
JD, for

∣∣D(i−1)
∣∣ 
= 0 and rj /∈ D(i−1)

(6)

probabilities in all previous phases to obtain cardinality of the
decoding set in the i-th phase. However, outage probability
in the i-th phase follows Markovity, where it depends on
only the (i − 1)-th phase. Let the random variables related
to cardinality of the decoding set in i-th phase be Di. Outage
probability in the i-th phase is dependent on all of the previous
random variables, i.e., {Dl}i−1

l=1 = {D1, ...,Di−1}. Owing
to the Markovity for D, outage probability in the i-th phase
denoting Pr{outi} is given by

Pr{outi}
=

∑
{Dl}i−1

l=1∈SD

Pr
{

outi
∣∣{Dl}i−1

l=1

}
Pr
{{Dl}i−1

l=1

}

=
∑

Di−1∈SD

Pr{outi
∣∣Di−1}Pr{Di−1} (8)

=
K∑
t=0

Pr

{
out

∣∣∣∣ ∣∣∣D(i−1)
∣∣∣ = t

}
Pr
{∣∣∣D(i−1)

∣∣∣ = t
}

(9)

=
K∑
t=0

Pr
{
log

∣∣∣IM + ρH
(i)
b∗,dH

(i)†
b∗,d

∣∣∣ < R

∣∣∣∣ ∣∣∣D(i−1)
∣∣∣ = t

}

· Pr
{∣∣∣D(i−1)

∣∣∣ = t
}

(10)

=

K∑
t=0

[
Pr
{
log

∣∣∣IM + ρH
(i)
r,dH

(i)†
r,d

∣∣∣ < R
}]t

Pr
{∣∣∣D(i−1)

∣∣∣ = t
}

(11)

where SD is the sample space of random variables on the
cardinality of the decoding set. Eq. (8) follows from the
Markovity and chain rule and holds due to the assumption that
all interference channels are i.i.d., therefore outage probability
is independent of the index of the selected relay node. Outage
probability in the i-th phase is simplified but it is still in-
tractable because outage probability in each phase depends on
cardinality of the decoding set in the previous phase. In order
to properly handle this complicated system model where n−1
codewords are transmitted during n phases, average DMT
should be analyzed since DMT in the i-th phase depends on
both channel state and decoding set cardinality in all previous
phases. Thus, we devise a Markov chain for the cardinality
of the decoding set so as to reduce analytical complexity and
make analysis more precise. Before the Markov chain reaches
a steady state, outage probability and DMT in each phase are
not static. On the other hand, after the Markov chain arrives
at a steady state, outage probability and DMT in each phase
become constant for any arbitrary phase. Note that the time
until the Markov chain reaches the steady state is negligible
in the system model where n − 1 codewords are transmitted
during n phases if n is sufficiently large. This fact can be
confirmed by our mathematical analysis in Appendix A.

Define the states of our Markov chain by the cardinality
of the decoding set, i.e., 0, ...,K . The transition matrix, P is

defined as

P =

⎛
⎜⎜⎜⎜⎜⎝

P0,0 P1,0 · · · PK−1,0 PK,0

P0,1 P1,1 · · · PK−1,1 PK,1

...
...

. . .
...

...
P0,K−1 P1,K−1 · · · PK−1,K−1 PK,K−1

P0,K 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (12)

where Pi,j is the transition probability from state i to j. The
transition probability Pij from state i to state j is constructed
from all possible combinations of SIC and joint decoding.
Once dynamic refreshing with Nc is adopted, the transition
matrix can be formulated as Eq. (13) on the top of the next
page. Note that PK−Nc,K = PK−Nc+1,K = · · · = PK,K = 0
in the last row since a selected relay in the decoding set is
always forwarding and thus the cardinality of the decoding
set cannot be K except for the first phase and the first Nc

columns are the same since they are transition probabilities
from the initial state due to refreshing.

Let π(= [π0, π1, ..., πK ]T ) be a (K + 1) × 1 steady state
probability vector for the cardinality of the decoding set and
then it is obvious that

∑K
j=0 πj = 1. After a sufficiently large

number of phases, the outage probability can be obtained by
using Lemma 1.

Lemma 1: If a Markov chain is irreducible and aperiodic,
then either the states are all transient or all states are positive
recurrent. If all states of the Markov chain are positive
recurrent, the n-step transition probability to reach state j,
rij(n), converges to a steady state probability πj regardless
of the initial state i. That is,

π = lim
n→∞Pn

i > 0 (14)

where P is a transition matrix of the Markov chain and Pn
i is

the i-th column of the matrix Pn. π has a unique stationary
distribution.

Proof: See the reference [22].
Because the Markov chain reaches a steady state after a
sufficient number of phases which is negligible compared to
large n, the steady state probability, πj , ∀j ∈ {0, · · · ,K},
can be substituted for the probability of the cardinality of
decoding set, Pr{∣∣D(i−1)

∣∣ = t}, after a large number of
phases. Correspondingly, the outage probability given in Eq.
(11) reduces to

Pr{outi} =

K∑
t=0

(
Pr
{
log

∣∣∣IM + ρH
(i)
r,dH

(i)†
r,d

∣∣∣ < R
})t

· πt.

(15)

The accuracy of the snapshot approach using a Markov
chain when the number of phases is not extremely large is
verified in Fig. 2 in the next page. The outage probability from
Eq. (15) matches well with the outage probability by Monte-
Carlo simulations. That is, the simulation results validate
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0,0 · · · P0,0 PK−Nc,0 · · · PK−1,0 PK,0

P0,1 · · · P0,1 PK−Nc,1 · · · PK−1,1 PK,1

P0,2 · · · P0,2 PK−Nc,2 · · · PK−1,2 PK,2

... · · · ...
. . .

...
...

...
P0,K−2 · · · P0,K−2 PK−Nc,K−2 · · · PK−1,K−2 PK,K−2

P0,K−1 · · · P0,K−1 PK−Nc,K−1 · · · PK−1,K−1 PK,K−1

P0,K · · · P0,K 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)
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Fig. 2. Comparison simulation of outage probability of the proposed protocol
with analysis when K = 3 and R = 1 or R = 3 for 30 phases.

the theoretical analysis using the steady state probability of
the decoding set cardinality. Therefore, an arbitrary number
of transmission phases can be incorporated in the outage
probability analysis using a Markov chain contrary to [17].

Focusing on DMT performance, substitute R with r log ρ
and let

πt
.
= π̃t, (16)

where π̃t is the dominant scale of πt. Then, the outage
probability scales like

Pr{outi} .
=

K∑
t=0

ρ−tdm,m(r)π̃t, (17)

where dm,m(r) is the optimal m by m MIMO DMT shown
in [2], which can be formulated by the piecewise curve, (m−
r)(m − r)+.

In the proposed protocol, a relay performs SIC if it success-
fully decodes in the previous phase and if not, joint decoding
is performed. In each phase, the signaling overhead in this
protocol is the same as that required for MHRS in [17] because
each relay node knows its own decoding status. That means
no additional overhead is needed in determining a strategy for
managing inter-relay interference.

The outage events for SIC and joint decoding are defined in
Eq. (3) and Eq. (4), respectively. Therefore, the outage prob-
abilities conditioned on the decoding status in the previous

phase scale like

Pr{outi|outi−1} .
= ρ−dm,m(r), (18)

Pr{outi|outi−1} .
= ρ−dJD

m,m(r) (19)

where outi denotes successful decoding in the ith phase and
dJDm,m(r) is DMT of joint decoding in an m × m MIMO
channel. Throughout this paper, the DMT of joint decoding
can be obtained from the DMT analysis for a Z-channel [23],
[24] because the outage events for joint decoding are the same
as those for the Z-channel. DMT of an m × m MIMO Z-
channel without CSI at transmitters (CSIT) is given by [24]

dJDm,m(r) = min{dm,m(r), dm,2m(2r)}. (20)

DMT of a single-antenna Z-channel is given in Eq. (21)
[23] on the top of the next page where η � min(1, β)

and μ � max(1, β) assuming
∣∣∣ρH(i)

s,rjH
(i)†
s,rj

∣∣∣ = ρ and∣∣∣ρH(i)
b∗,rjH

(i)†
b∗,rj

∣∣∣ = ρβ on the top of the next page. If β = 1,
we can confirm that Eq. (20) is absolutely a super set of Eq.
(21), i.e., dJD1,1 (r) = dJD(r, 1).

We will focus on the case that the perceived interference
power from the selected relay is comparable to the received
power of the desired signal, i.e., β = 1.

Theorem 1: When there are m-antenna K relays in the
absence of a direct link between the source and destination
with m antennas at each, the DMT of the upper bound for
opportunistic relaying is given by

dupper(r,m,K) = (K − 1)dm,m(r) (22)

Proof: Due to successive forwarding by the selected relay,
K − 1 relays can be candidates for relay selection in every
phase. Since all channels are assumed to be i.i.d., m × m
MIMO DMT with K−1 selection diversity is the upper bound.

Theorem 2: When each node has m antennas, the DMT of
the proposed protocol with dynamic refreshing for Nc is given
by Eq. (23) on the top of the next page.

Proof: See Appendix A.
Remark 1: When each node has one antenna, the DMT of

the proposed protocol with dynamic refreshing for Nc is given
by Eq. (24) on the top of the next page.

The proposed protocol with dynamic refreshing makes a full
recovery from the multiplexing loss caused by half duplex
operation and approaches the optimal DMT bound when
0 < r ≤ m

2 because the cardinality of the decoding set is
asymptotically K−1 (i.e., ρ0 in the K-th element in π̃) when
0 < r ≤ m

2 as shown in Appendix A. Interestingly, the region
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dJD(r, β) =

{
min(1− r, 1 + β − 2(1 + β)r), if (1 + β)r ≤ η

μ− (1 + β)r, if η < (1 + β)r ≤ μ
(21)

dSE(r,m,K,Nc) =

⎧⎪⎨
⎪⎩

(K − 1)dm,m(r), if 0 < r ≤ m
3

min
i=1,··· ,K−1−Nc

{
(K − 1− i)dm,m(r) + 1

2 (i
2 + i)dJDm,m(r)

}
, if m

3 < r ≤ m
2

Ncdm,m(K−Nc+1
K−Nc

r), if m
2 < r ≤ m

(23)

dSE(r, 1,K,Nc) =

⎧⎪⎨
⎪⎩

(K − 1)(1 − r), if 0 < r ≤ 1
3

min
i=1,··· ,K−1−Nc

{
K + i2 − 1− (K + 2i2 + i− 1)r

}
, if 1

3 < r ≤ 1
2

Nc(1 − K−Nc+1
K−Nc

r)+, if 1
2 < r ≤ 1

. (24)

where m
3 < r ≤ m

2 is again divided into K −Nc − 1 regions
with different DMTs for 1 ≤ Nc ≤ K − 2, and diversity
gain grows as Nc increases (refer to Appendix A for details).
A larger value of Nc triggers earlier refreshing that decreases
multiplexing gain but improves diversity gain because the car-
dinality of the decoding set determines diversity gain. When
m
2 < r ≤ m, the DMT performance by dynamic refreshing

can be optimized by adaptively selecting the value of Nc

according to multiplexing gain r, and multiplexing gain can
be K−Nc+1

K−Nc
. In conclusion, if multiplexing gain is less than

a certain value, dynamic refreshing is not required because
the proposed protocol without dynamic refreshing already
achieves the DMT upper bound. However, if multiplexing
gain is larger than a certain value, adaptive selection of Nc

according to multiplexing gain significantly improves DMT
performance. For example, the optimal value of Nc is K − 2
in the multiplexing gain region where the proposed protocol
with dynamic refreshing outperforms the protocol of [17] in
terms of DMT. The following corollary identifies the region
where dynamic refreshing yields DMT performance gain over
the protocol of [17].

Corollary 1: The proposed protocol with dynamic refresh-
ing approximately achieves the upper bound of DMT in the
following multiplexing gain regime as K increases and the
optimal value of Nc is this region becomes K − 2:

rOPT ∈
[
0,

m

2

]
(25)

Proof:

lim
K→∞

dSE(r,m,K,Nc)|Nc=K−2 (26)

= lim
K→∞

max
{
(K − 1)dm,m(r),

(K − 2)dm,m(r) + dJDm,m(r)
}

(27)

(a)� (K − 1)dm,m(r) (28)

= dupper(r,m,K) (29)

where r ∈ [
0.m2

]
, and (a) follows from that (K−1)dm,m(r) �

(K − 2)dm,m(r) + dJDm,m(r) when K goes to infinity.
If dynamic refreshing is applied to the proposed protocol,

additional overhead is required for dynamic refreshing. The
amount of feedback information depends on the cardinality of

the decoding set. The relays in the decoding set send their
own status with one bit to the destination node. Then, the
destination node knows how many relays are in the decoding
set in each phase. If refreshing is needed, the destination node
notifies it to relays with one bit.

Assuming perfect feedback, multiplexing gain r, and cor-
responding optimal N∗

c , the required number of feedback bits
is equal to

K∑
k=0

Pr (|D| = k) {K + Pr(k ≤ N∗
c ) + Pr(k > N∗

c ) logK} .

In particular, since Pr (|D| = K − 1) = 1 asymptotically and
N∗

c = K − 2 when 0 ≤ r ≤ 1
2 from Theorem 2, the total

number of the required feedback bits when 0 ≤ r ≤ 1
2 is

K + logK bits. Otherwise, when 1
2 ≤ r ≤ 1, we need the

following amount of feedback information in an average sense.

K∑
k=N∗

c

1

K −N∗
c + 1

{
K +

1

K −N∗
c + 1

+
(K −N∗

c ) logK

K −N∗
c + 1

}
(30)

bits since the steady state probabilities of the states are
asymptotically the same – for given N∗

c , there are K−N∗
c +1

states. This result confirms that a finite number of feedback
bits per transmit node is sufficient for the proposed protocol3.

V. NUMERICAL RESULTS

This section compares the DMT performance of the pro-
posed protocol with that of the multi-hop relay selection
(MHRS) protocol of [17] which has been known to achieve
the best DMT performance until now for the system model
without decoding delay which we consider. For example, if
m = 1, the achievable DMT of the MHRS protocol is given
by

dMHRS(r, 1,K,B)

= max{dSC′(r, 1,K,B), dJD′(r, 1,K,B)}

3The overhead analysis does not take into account preambles or pilots for
packets as [17] did.
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Fig. 3. DMT of the proposed protocol and MHRS scheme case when K =
10 and m = 1.

where

dSC′(r, 1,K,B) = (K −B + 1)+
(
1− B + 1

B
r

)+

,

dJD′(r, 1,K,B) = min

{
(K − 1)

(
1− B + 1

B
r

)+

,

min
t=0,...,K−1

[(2K − 2− t)− B + 1

B
r(4K − 4− 3t)]+

}
,

(31)

and (B + 1) is the number of phases until refreshing.
The DMT performance of both schemes largely depends

on the time to refresh the protocols; the cardinality of the
decoding set determines the refreshing time in the proposed
protocol while refreshing occurs after a given number of
phases in the MHRS protocol. The number of phases in the
MHRS protocol is typically set to be the number of relays in
order not to lose diversity gain after a large number of phases.
For fair comparison, the decoding set cardinality for refreshing
Nc and the number of phases are adaptively optimized for both
protocols, respectively, and then the achievable DMTs of the
protocols are given, respectively, by maxNc dSE(r, 1,K,Nc)
and maxn dMHRS(r, 1,K,B) if m = 1.

Fig. 3 and Fig. 4 show achievable DMT curves of the
proposed protocol with dynamic refreshing and the MHRS
[17] when m = 1. When 0 < r ≤ 1

3 , the proposed protocol
achieves the DMT upper bound for the given number of relay
nodes even without dynamic refreshing. When 1

3 < r ≤ 1
2 , the

proposed protocol approaches the DMT upper bound owing to
dynamic refreshing and significantly outperforms the MHRS
protocol in which joint decoding is switches to SIC beyond
r = 0.35. The optimal value of Nc in the proposed protocol
with dynamic refreshing is K − 2 when 1

3 < r ≤ 1
2 . It should

be noted that the gap between the DMT upper bound and the
proposed protocol does not depend on K and thus the ratio
of achievable diversity gains between the proposed protocol
and the DMT upper bound for a given multiplexing gain
converges to 1 as K increases. While N∗

c and the multiplexing

.
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Fig. 4. DMT of the proposed protocol and MHRS scheme when K = 30
and m = 1.

loss are fixed when 0 < r ≤ 1
2 , the optimal values of

Nc and the number of phases vary according to every value
of multiplexing gain r when r > 0.5. Interestingly, both
protocols have the same achievable DMT when r > 0.5
because the proposed protocol always selects SIC in the region
while the MHRS already switches from joint decoding to SIC
beyond r = 0.35.

In summary, the proposed protocol with dynamic refreshing
achieves the optimal DMT bound in the low multiplexing gain
regime and yields the same DMT performance with the MHRS
scheme in the relatively high multiplexing gain regime. The
gain of the proposed protocol comes form dynamic refreshing
based on the decoding set cardinality and joint consideration
of joint decoding and SIC. However, SIC is always used for
both protocols in the relatively high multiplexing gain regime
given by rSIC ∈ [

m
2 ,m

]
.

VI. CONCLUSION

We proposed a spectral efficient protocol with multiple
half duplex relay nodes in the absence of a direct link from
source to destination using dynamic refreshing if all nodes
have m antennas at each. We analyzed its DMT by using
a Markov chain in steady states to reflect the cardinality
of the decoding set. Our analysis is applicable to arbitrary
number of transmission phases contrary to existing studies.
The proposed protocol with dynamic refreshing achieves the
optimal DMT bound in the low multiplexing gain regime and
shows the best DMT performance among existing protocols
without decoding delay regardless of multiplexing gain. The
gain of the proposed protocol in terms of DMT results from
both dynamic refreshing and adaptive selection of SIC and
joint decoding at each relay.

APPENDIX A
PROOF OF THEOREM 1

Throughout Appendix A, we show how and when the dom-
inant scale of each element of the transition matrix converges
when dynamic refresh is adopted. The dominant exponential
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scale of each element in the transition matrix depends on the
multiplexing gain, r. For the three mainly different regions of
the multiplexing gain, the dominant scales of the steady state
probability vector π are derived as follows:

1) 0 < r ≤ m
3

Since dJDm,m(r) = min{dm,m(r), dm,2m(2r)} =
dm,m(r) for 0 < r ≤ m

3 ,

P
.
= (P0 · · ·PNcPNc+1 · · ·PK−1PK) ,

P2 .
=
(
P2

0 · · ·P2
Nc

P2
Nc+1 · · ·P2

K−1P
2
K

)
,

where

P0 = · · · = PNc

.
=
[
ρ−Kdm,m(r), ρ−(K−1)dm,m(r),

· · · , ρ−dm,m(r), ρ0
]T

, (32)

PNc+1 = · · · = PK
.
=
[
ρ−(K−1)dm,m(r),

ρ−(K−2)dm,m(r), · · · , ρ−dm,m(r), ρ0, 0
]T

, (33)

P2
0 = · · · = P2

Nc

.
=
[
ρ−(K−1)dm,m(r),

ρ−(K−2)dm,m(r), · · · , ρ−dm,m(r), ρ0, ρ−Kdm,m(r)
]T

,

(34)

P2
Nc+1 = · · · = P2

K
.
=
[
ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r),

· · · , ρ−dm,m(r), ρ0, ρ−(K−1)dm,m(r)
]T

(35)

Note that P0 = · · · = PNc if the refreshing criterion
of the proposed protocol is Nc in any multiplexing gain
region. In the same way, we can obtain P3 .

= · · · .
=

limn→∞ Pn .
= (Pn

0 · · ·Pn
K) , where

Pn
0 = · · · = Pn

K
.
=
[
ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r),

· · · , ρ−dm,m(r), ρ0, ρ−(K−1)dm,m(r)
]T

. (36)

Therefore,

π = lim
n→∞Pn

i

.
=
[
ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r), ρ−(K−3)dm,m(r),

· · · , ρ0, ρ−(K−1)dm,m(r)
]T

� π̃ (37)

where Pn
i is the (i + 1)-th column of the matrix Pn.

Since ρ0 is only in the K-th element of π̃,

lim
ρ→∞π

.
= [π

(1)
0 , π

(1)
1 · · · , π(1)

K−1, π
(1)
K ]T

≈ [0 0 · · · 0 1 0]T . (38)

That is, limρ→∞ πK−1 ≈ 1 and limρ→∞ πt ≈ 0, ∀t 
=
K− 1 where πt is the steady state probability of state t
corresponding to (t+1)-th element of π. Note that two
limits about n and ρ are independent so that the order
of limits is irrelevant to the DMT results throughout this
paper.

2) m
3 < r ≤ m

2
Since dJDm,m(r) = min{dm,m(r), dm,2m(2r)} =

dm,2m(2r), which means dJDm,m(r) < dm,m(r), for
r ∈ [

m
3 ,

m
2

]
, P

.
= (P0 · · ·PNcPNc+1 · · ·PK−1PK)

where

P0
.
=
[
ρ−Kdm,m(r), ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r),

· · · , ρ−2dm,m(r), ρ−dm,m(r), ρ0
]T

, (39)

...

PNc

.
=
[
ρ−Kdm,m(r), ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r),

· · · , ρ−2dm,m(r), ρ−dm,m(r), ρ0
]T

, (40)

PNc+1
.
=
[
ρ−{Ncdm,m(r)+(K−Nc−1)dJD

m,m(r)},

ρ−{(Nc−1)dm,m(r)+(K−Nc−1)dJD
m,m(r)},

· · · , ρ−{dm,m(r)+(K−Nc−1)dJD
m,m(r)},

ρ−(K−Nc−1)dJD
m,m(r), ρ−(K−Nc−2)dJD

m,m(r),

· · · , ρ0, 0
]T

, (41)

...

Pi
.
=
[
ρ−{(i−1)dm,m(r)+(K−i)dJD

m,m(r)},

ρ−{(i−2)dm,m(r)+(K−i)dJD
m,m(r)}, · · · ,

ρ−{(K−i)dJD
m,m(r)}, ρ−{(K−i−1)dJD

m,m(r)}, · · · ,
ρ−dJD

m,m(r)ρ0, 0
]T

, (42)

...

PK−1
.
=
[
ρ−{(K−2)dm,m(r)+dJD

m,m(r)},

ρ−{(K−3)dm,m(r)+dJD
m,m(r)}, · · · , ρ−dJD

m,m(r), ρ0, 0
]T

,

(43)

PK
.
=
[
ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r),

ρ−(K−3)dm,m(r), · · · , ρ−dm,m(r), ρ0, 0
]T

, (44)

where i > Nc. Interestingly, the dominant scales of Pn

are different depending on n, K , and multiplexing gain,
r. Each element in the transition matrix is obtained as

P k+1
i,j =

K∑
l=0

P k
l,jPi,l

.
= max

l
P k
l,jPi,l, ∀k ≥ 1, (45)

and the scale of P 2
i,j in P2 is different for two cases:

dm,m(r) ≤ 2dJDm,m(r) or not. It should be noted that
Pi,j is the transition probability from the state i to the
state j, and corresponds to the (j+1, i+1) entry in the
transition matrix P.

• For dm,m(r) ≤ 2dJDm,m(r),

P k+1
i,j =

K∑
l=0

P k
l,jP

k
i,l

.
= max

l
P k
l,jP

k
i,l

= P k
K−1,jP

k
i,K−1 = P k

K−1,j , ∀k ≥ 1 (46)

where 1+Nc ≤ i ≤ K and 0 ≤ j ≤ K−1. Let π(1)

be the dominant scale of the steady state probability
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vector when dm,m(r) ≤ 2dJDm,m(r). After some ma-
trix computation, we can straightforwardly confirm
that

π(1) = lim
n→∞Pn

i = [π
(1)
0 , π

(1)
1 · · · , π(1)

K−1, π
(1)
K ]T

.
= [PK−1(1),PK−1(2), · · · ,PK−1(K), π

(1)
K ]T

(47)

where π
(j)
i is the steady state probability of the i-th

state in π(j) (or the (i+1)-th element of π(j)) and
PK−1(l) is the l-th element of the vector PK−1.
On the other hand,

π
(1)
K = lim

n→∞Pn
K−1,K = lim

k→∞

K∑
l=0

P k
l,KPK−1,l

.
= lim

k→∞
P0,KPK−1,0P

k
K−1,K−1

= P0,KPK−1,0. (48)

Therefore, we can finally obtain the dominant scales
of the steady state probability vector in dm,m(r) ≤
2dJDm,m(r) given by

π(1) .
=
[
ρ−{(K−2)dm,m(r)+dJD

m,m(r)},

ρ−{(K−3)dm,m(r)+dJD
m,m(r)}, · · · , ρ−dJD

m,m(r),

ρ0, ρ−{(K−2)dm,m(r)+dJD
m,m(r)}

]T
� π̃(1). (49)

• For 2dJDm,m(r) < dm,m(r),
P2 .

=
(
P2

0 · · ·P2
Nc

P2
Nc+1 · · ·P2

K−1P
2
K

)
where

P2
0
.
=
[
ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r),

· · · , ρ−dm,m(r), ρ0, ρ−Kdm,m(r)
]T

, (50)

...

P2
Nc

.
=
[
ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r),

· · · , ρ−dm,m(r), ρ0, ρ−Kdm,m(r)
]T

, (51)

P2
Nc+1

.
=

[
ρ−{(Nc−1)dm,m(r)+(2K−2Nc−1)dJD

m,m(r)},

ρ−{(Nc−2)dm,m(r)+(2K−2Nc−1)dJD
m,m(r)}, · · · ,

ρ−{dm,m(r)+(2K−2Nc−1)dJD
m,m(r)},

ρ−(2K−2Nc−1)dJD
m,m(r), ρ−(2K−2Nc−3)dJD

m,m(r), · · · ,
ρ−dJD

m,m(r), ρ0, ρ−{(Nc−1)dm,m(r)+(2K−2Nc−1)dJD
m,m(r)}

]T
,

(52)

...

P2
i

.
=

[
ρ−{(i−2)dm,m(r)+(2K−2i+1)dJD

m,m(r)},

ρ−{(i−3)dm,m(r)+(2K−2i+1)dJD
m,m(r)},

· · · , ρ−{(2K−2i+1)dJD
m,m(r)}, ρ−{(2K−2i−1)dJD

m,m(r)},

· · · , ρ−dJD
m,m(r), ρ0, ρ−{(i−2)dm,m(r)+(2K−2i+1)dJD

m,m(r)}
]T

,

(53)

...

P2
K−1

.
=

[
ρ−{(K−3)dm,m(r)+3dJD

m,m(r)},

ρ−{(K−2)dm,m(r)+3dJD
m,m(r)}, · · · ,

ρ−{dm,m(r)+3dJD
m,m(r)}ρ−3dJD

m,m(r), ρ−dJD
m,m(r), ρ0,

ρ−{(K−3)dm,m(r)+3dJD
m,m(r)}

]T
, (54)

P2
K

.
=

[
ρ−(K−1)dm,m(r), ρ−(K−2)dm,m(r),

ρ−(K−3)dm,m(r), · · · , ρ−dm,m(r), ρ0,

ρ−(K−1)dm,m(r)
]T

, (55)

where i > Nc > 0. Pk (k ≥ 3) has different
dominant scales according to the multiplexing gain
regions, idJDm,m(r) < dm,m(r) ≤ (i + 1)dJDm,m(r)
for i = 2, 3, · · · . First, for 2dJDm,m(r) < dm,m(r) ≤
3dJDm,m(r),

P k+1
i,j =

K∑
l=0

P k
l,jP

k
i,l

.
= max

l
P k
l,jP

k
i,l

= P k
K−1,jP

k
i,K−1 = P k

K−1,j ∀k ≥ 2 (56)

where 2 + Nc ≤ i ≤ K and 0 ≤ j ≤ K − 1.
Let π(2) be the dominant scale of the steady state
probability vector for Pn

i in the region, 2dJDm,m(r) <

dm,m(r) ≤ 3dJDm,m(r). Similarly to π(1), π(2) is
obtained as

π(2) = lim
n→∞Pn

i
.
= P2

K−1 (57)

=
[
ρ−{(K−3)dm,m(r)+3dJD

m,m(r)},

ρ−{(K−1)dm,m(r)+3dJD
m,m(r)}, · · · ,

ρ−{dm,m(r)+3dJD
m,m(r)}, ρ−3dJD

m,m(r),

ρ−dJD
m,m(r), ρ0, ρ−{(K−3)dm,m(r)+3dJD

m,m(r)}
]T

� π̃(2) (58)

In the same way of computing π(1) and π(2), we can
obtain the general π(i), which is the dominant scale of
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the steady state probability vector when idJDm,m(r) <
dm,m(r) ≤ (i+ 1)dJDm,m(r), by

π(i) = lim
n→∞Pn

i
.
= Pi

K−1

=
[
ρ−{(K−i−1)dm,m(r)+ i2+i

2 dJD
m,m(r)},

ρ−{(K−i−2)dm,m(r)+ i2+i
2 dJD

m,m(r)}, · · · ,
ρ−{ i2+i

2 dJD
m,m(r)}, rho−6dJD

m,m(r), ρ−3dJD
m,m(r),

ρ−dJD
m,m(r), ρ0, ρ−{(K−i−1)dm,m(r)+ i2+i

2 dJD
m,m(r)}

]T
� π̃(i). (59)

Therefore, there are K−Nc−1 multiplexing regions for
r ∈ (

m
3 ,≤ m

2

]
, which lead different dominant scales for

the steady state probability vector. For r ∈ (
m
3 ,≤ m

2

]
,

we can obtain the dominant scale of the steady state
probability vector for r ∈ (

m
3 ,≤ m

2

]
when dynamic

refreshing is applied as Eq. (60) on the top of the next
page.
Since ρ0 is only in the K-th element of π̃,

lim
ρ→∞π = [π

(1)
0 , π

(1)
1 · · · , π(1)

K−1, π
(1)
K ]T

≈ [0 0 · · · 0 1 0]T . (61)

That is, limρ→∞ πK−1 ≈ 1 and limρ→∞ πt ≈ 0, ∀t 
=
K − 1.

3) m
2 < r ≤ m

Since dJDm,m(r) = 0 for r ∈ (
m
2 ,m

]
, P

.
=

(P0 · · ·PNcPNc+1 · · ·PK−1PK) where

P0 = · · · = PNc

.
=

[
ρ−Kdm,m(r), ρ−(K−1)dm,m(r), · · · , ρ−dm,m(r), ρ0

]T
,

(62)

Pi
.
=

[
ρ−(i−1)dm,m(r), ρ−(i−2)dm,m(r), · · · , ρ−dm,m(r),

ρ0, 0
]T

, (63)

where Nc+1 ≤ i ≤ K . In the same way as in the other
multiplexing regions, the dominant scales of the steady
state probabilities are obtained by

π = lim
n→∞

Pn
i

.
=

[
ρ−Ncdm,m(r), ρ−(Nc−1)dm,m(r), · · · , ρ−dm,m(r), ρ0,

· · · , ρ0, ρ0
]T

� π̃. (64)

Since ρ0 appears in the last K −Nc + 1 elements,

lim
ρ→∞π = [π0, π1 · · · , πK−1, πK ]T

≈ [0 0 · · · cNc · · · cK−1 cK ]
T (65)

and it is easily shown that all the coefficients of ρ0 are
the same. Therefore, cNc = · · · = cK = 1

K−Nc+1 and
the maximum multiplexing gain when r ∈ (

m
2 ,m

]
is

K−Nc

K−Nc+1 because dynamic refreshing occurs when the
cardinality of the decoding set is Nc.

Substituting π̃t, t = 0, · · · ,K into Eq. (17), we obtain Eq.
(23).
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π =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(1), if dm,m(r) ≤ 2dJDm,m(r)

π(2), if 2dJDm,m(r) < dm,m(r) ≤ 3dJDm,m(r)
...

π(i), if idJDm,m(r) < dm,m(r) ≤ (i+ 1)dJDm,m(r)
...

π(K−Nc−2), if (K −Nc − 2)dJDm,m(r) < dm,m(r) ≤ (K −Nc − 1)dJDm,m(r)

π(K−Nc−1), if (K −Nc − 1)dJDm,m(r) < dm,m(r)

. (60)
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